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ABSTRACT 

Background: Open Source Software (OSS) is used by a 
continuously growing number of people, both end-users and 
developers. The quality of OSS is thus an issue of increasing 
interest. Specifically, OSS stakeholders need to trust OSS with 
respect to a number of qualities.  
Objective: This paper focuses on the level of trust that OSS 
stakeholders have in OSS reliability, one of the most important 
software qualities. The goal of the work reported here is to 
investigate to what extent the perception of reliability by users 
depends on objectively measurable characteristics of software.  
Method: We collected subjective user evaluations of the reliability 
of 22 Java OSS products, and then we measured their code 
characteristics that are generally believed to affect the quality of 
software. Finally, we carried out a correlational study to predict 
the perceived level of reliability of OSS based on the measured 
characteristics of the software code.   
Result: We obtained a set of statistically significant quantitative 
models, collectively called MOSST\REL, which account for the 
dependence of the perceived reliability of OSS on objectively 
observable qualities of Java code.  
Conclusions: The models we obtained can be used by: 1) end-
users and developers that would like to reuse existing OSS 
products and components, to evaluate the perceived level of 
reliability of these OSS products that can be expected based on 
the characteristics of code; 2) the developers of OSS products, 
who can set code quality targets based on the level of perceived 
reliability they want to achieve. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – product metrics. 

General Terms 
Measurement, Reliability, Experimentation. 

Keywords 

Open source software, reliability model, object-oriented measures. 

1. INTRODUCTION 
Reliability is one of the most important qualities of any software 
product. As such, it has been included as one of the top-level 
characteristics of the international ISO9126 standard [18] in all of 
its versions. Reliability issues, like several quality issues, are even 
more important in Open Source Software (OSS) than in Closed 
Source Software (CSS), as some software stakeholders (i.e., end-
users, developers, integrators, project managers, upper 
management, etc.) may still be somewhat concerned about the 
reliability (and more generally the quality) of OSS as compared to 
CSS. While often overestimated, these concerns show that at least 
some software stakeholders may have issues in trusting OSS and, 
more specifically, its reliability. This is certainly not surprising, 
since, like with any other product, stakeholders need to trust OSS 
and its specific qualities before they can use it and depend on it. 
Therefore, it is important that OSS stakeholders be able to 
evaluate and estimate the level of trust that they can have in the 
reliability of OSS products and components, so they can be 
confident when they choose OSS software products and 
components. 
In this paper, we report on a study that we carried out in the 
QualiPSo project [4], funded by the European Union in the 6th 
Framework Program, whose general goal was to define and 
implement technologies, procedures, and policies to leverage the 
OSS development practices to sound and established industrial 
operations. Among the objectives of QualiPSo was the definition 
of a model of the trustworthiness of OSS products. To this end, 
we adopted a goal-oriented and empirical approach, i.e., based on 
analyzing OSS real-life projects and surveying extensive sets of 
OSS stakeholders. 
One of the key results of QualiPSo was therefore MOSST (Model 
of Open Source Software Trustworthiness), which is a 
comprehensive set of statistical models that allow OSS 
stakeholders to estimate the trustworthiness of OSS products. OSS 
trustworthiness itself is a broad concept and has several 
“dimensions,” of which trust in OSS reliability is one of the most 
important ones, along with trust in usability, portability, 
interoperability, security, documentation quality, etc. [10]. 
MOSST estimates the level of trust in each of these dimensions 
based on a number of product- and process-related factors, which 
play the role of the independent variables of the estimation 
models, while the trustworthiness dimensions play the role of the 
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dependent variables. Specifically, we obtained several estimation 
models for trustworthiness and all of its dimensions. 

In this paper, we focus on the results we have obtained for the 
trust in OSS reliability, for which we have obtained a set of 
models, which we call MOSST\REL, which allow for the 
identification, quantification, and assessment of the factors related 
to the OSS products and processes that have a statistically 
significant impact on the level of trust in the reliability of OSS 
products. The models in MOSST\REL quantitatively estimate the 
impact that these factors, in isolation or combined, have on the 
level of trust in OSS reliability. We used Binary Logistic 
Regression to derive these models, as we explain in Section 4. 

Data collection and analysis were supported by automated 
software tools, with the goal of making the evaluation of OSS 
trustworthiness as easy and seamless as possible both during the 
building of the MOSST model (based on 22 Java OSS products) 
and afterwards, when MOSST is used by OSS stakeholders. The 
tool set includes tools from external OSS providers as well as 
tools developed by the partners during the QualiPSo project. Here, 
we describe a tool of the MOSST tool set, namely MACXIM, 
which is a static code measurement and analysis tool. More 
information about the MOSST toolset can be found in [19]. 

The remainder of this paper is structured as follows. Section 2 
describes the measures and the tool that we used for 
characterizing OSS code. Section 3 describes the subjective 
measures and reports about their collection. Section 4 describes 
our approach to the reported analysis, and explains the usage of 
Binary Logistic Regression. Section 5 reports and discusses the 
results of the analysis, and provides some indications on how 
these results may be used. Section 6 discusses threats to the 
validity of the reported study. Section 7 accounts for related work, 
while conclusions and an outline of future work are in Section 8. 

2. CODE MEASURES 
Currently, several OSS and CSS measurement tools are available 
to collect information about software code properties. However, 
most of the existing tools lack in usability and support only a 
subset of the possibly relevant code metrics. Here, we describe 
both the tool we used during the collection of the measures for the 
independent variables of MOSST\REL, and the measures 
themselves. 

In the QualiPSo project [4], we developed MACXIM, a new 
generation measurement tool which provides static measures of 
source code via a meta representation of the code abstract syntax 
tree. MACXIM is released under the OSS LGPL license and can 
be downloaded from [6]. 

The latest version of MACXIM –obtained by enhancing an earlier 
version [5]– supports the most recent versions of Java, thanks to 
the incorporation of the parser contained in the Eclipse compiler, 
a component of the Eclipse Core Java Development Tools [9], and 
supports a wide set of measures. 

MACXIM stores a simplified representation of the abstract syntax 
tree of the source code in a relational database (see Figure 1), thus 
allowing users to extract several metrics simply via SQL queries. 
The main advantage of this approach, when compared to similar 
approaches, consists in the separation of two tasks that are usually 
deeply interconnected: 

– Source code analysis; 
– Computation of measures. 

 
Figure 1. An architectural representation of MACXIM 

The separation of these concerns is quite an advantage, since 
different measures can be implemented on top of the data 
provided by code analysis. Measurers can thus change or extend 
the set of supported metrics without necessarily having to modify 
the part of the program that performs code analysis. The current 
implementation of the code analyzer is powerful enough to 
support a wide range of measures, including all the most widely 
used object-oriented measures, like those by Chidamber and 
Kemerer [3].  

Moreover, MACXIM is developed with a plug-in architecture that 
allows the integration of external measurement tools: in the 
current version, we integrated the measurement capabilities of 
PMD [7] and Checkstyle [8]. 
For each Java product, MACXIM provides measures aggregated 
at application, package and class levels, where appropriate. The 
current release of MACXIM [6] provides 130 measures (of which 
58 yielded by the incorporated PMD and Checkstyle code), a 
selection of which is in Table 1. The complete list and explanation 
of measures supported by MACXIM can be found in [6]. 
Table 1. A selection of the measures supported by MACXIM 

Size/structure measures 

ELOC (Effective Lines Of Code) ELOC per Class 

ELOC per Interface Number of Packages 

Number of Classes Number Of Classes Out Of 
Packages 

Number of Abstract Classes Number of Interfaces 

Number of Methods Number of Public Methods 

Number of Private Methods Number of Protected Methods 

Number of Methods per Class Number of Methods per Interface 

Number of Parameters per Method Number of Attributes per Class 

Number of Public Attributes per 
Class 

Number of Classes With Defined 
Attributes 

Number of Classes With Defined 
Methods 

Number Implemented Interfaces 
per Class 

Number of Not Implemented 
Interfaces 

Cyclomatic Complexity (Mc 
Cabe Index) 

Chidamber & Kemerer measures 

CBO (Coupling Between Objects) LCOM (Lack Of Cohesion Of 
Methods) 

DIT (Depth of Inheritance Tree) NOC (Number Of Children) 

RFC (Response For A Class)  
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Figure 2. An example of project analysis 

 

 
Figure 3. An example of graphical representation of the 

MOSST\REL model 
MACXIM can be used by means of a Web application or a 
desktop client.  
The Web application is the main Graphical User Interface (GUI) 
that provides direct access to the MACXIM engine. The results of 
the analysis of a project can be accessed at different granularity 
levels, like the application,  package, class and method levels: for 
instance, the number of effective LOC is provided for the entire 
application, for each package, for each class and for each method. 
Figure 2 illustrates the measures of three releases of a Java 
project, while Figure 3 reports the graphical representation of a 
MOSST\REL model provided by the Spago4Q framework [22].  

The desktop client provides the same functionalities of the Web 
application, but communicates with MACXIM via Web services. 
A detailed description of this interface can be found at [6]. 

3. STAKEHOLDERS' MEASUREMENT OF 
TRUST IN RELIABILITY 
We carried out a survey in the QualiPSo project [4] to collect OSS 
stakeholders’ evaluations of 22 Java products according to the 
dimensions of the trustworthiness of OSS products we mentioned 
in the introduction. These dimensions are believed to be the ones 
that contribute to trustworthiness the most, based on a previous 
survey that we carried out among OSS stakeholders [10]. The list 
of products appears in [11]. In addition, we asked a few questions 
for profiling and characterizing the OSS stakeholders, including 
questions on how familiar they were with the products. We used a 
1 to 6 ordinal scale, where 1 was the worst and 6 the best 
evaluation for a specific quality of a product. As for reliability, we 
asked OSS stakeholders “How reliable is the product?” with the 
following possible answers: 

1 = absolutely not; 2 = little; 3 = just enough; 4 = more than 
enough; 5 = very/a lot; 6 = completely. 

Up to the end of October 2010, we collected 694 questionnaires, 
which included 1357 evaluations of the following 22 OSS Java 
products: Ant, Checkstyle, Eclipse, Findbugs, Hibernate, 
HttpUnit, Jack.CommonsIO, JasperReports, JBoss, JFreeChart, 
JMeter, Log4J, PMD, Saxon, Servicemix, SpringFramework, 
Struts, Tapestry, Weka, Xalan, Xerces. 
Our sample of respondents included all sorts of OSS stakeholders 
(i.e., end users, developers, integrators, managers, etc.). The 
questionnaires were collected at major international events –not 
necessarily strictly dealing with OSS topics– including: The 
Apache Conference 2009, The OW2 Conference 2009, XP 2009, 
OSS 2009, ICSE 2009, CONFSL 2009, QualiPSo Meeting June 
2009, ESC 2009, XML Conf 2010, Microsoft Real Code Conf 
2010, CONFSL 2010, OSCON 2010, Debian Conf 2010, Open 
World Forum 2010, Open Opportunity 2010 and fOSSa 2010. 

The questionnaire can be found on line at 
http://qualipso.dscpi.uninsubria.it/limesurvey (QualiPSo survey 
2). 

In the analysis, we used only products for which we obtained at 
least 6 subjective evaluations by stakeholders that indicated that 
they had good familiarity with the product, i.e., for which there 
were enough people in the sample that could provide us with data 
for the product to be included in the analysis. Seventeen products 
turned out to satisfy the selection criteria. 

4. ANALYSIS APPROACH 
Here, we explain how we built the models that correlate 
subjective OSS stakeholder evaluations concerning reliability with 
objective measures of code, to obtain the estimation models which 
compose MOSST\REL. 
To summarize the different evaluations in such a way that 
meaningful models could be built, we decided to divide the 
evaluations in positive ones (grade 5 or 6) and negative ones 
(grade 4 or less). We chose to set the dividing threshold between 4 
and 5 because in this way we are able to distinguish really 
satisfied stakeholders from other stakeholders and also because in 
the set of responses really few stakeholders gave a 1 or 2 score to 
a product for reliability. Using a lower threshold (e.g., between 3 
and 4) would have blurred the distinction between satisfied and 
unsatisfied stakeholders. 
If we denote the number of satisfied OSS stakeholders by S and 
the number of unsatisfied OSS stakeholders by U, we can 
compute the proportion S/(S+U) of satisfied stakeholders for the 
product, which provides a better indication of the level of trust in 
the reliability of the product than the absolute number of positive 
responses. As the absolute numbers of respondents (and therefore 
of positive and negative responses) for a product depends on a 
number of different factors like the operating system of the 
product, the application domain and many others, it makes more 
sense to use proportions to assess the level of trust in the 
reliability of a product. This proportion, based on the sample, 
quantifies the probability that the reliability of that product will be 
rated positively. 

Suppose that we need to assess the reliability of an OSS product 
that is not included in the set of OSS products of our survey. We 
do not have a direct evaluation from the field; accordingly, we 
need to estimate the proportion of satisfied users, i.e., the 
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probability that the reliability of that product will be rated 
positively. Thus, we need to build a model that estimates the 
probability that an OSS product will be positively rated. 

To this end, we used Binary Logistic Regression (BLR), a kind of 
regression used to estimate the probability that the dependent 
variable assumes one out of two possible values and the 
independent variables are of any type, i.e., discrete or continuous. 
In our case, the dependent variable values are “satisfied 
stakeholder” (which is coded with the numerical value 1 in our 
analysis) and “unsatisfied stakeholder” (which is coded with the 
numerical value 0 in our analysis). The independent variables are 
the measures of OSS project described in Section 2. More 
formally, BLR is based on the following formula 

!"#$ Y = 1  |  X! = x!,… , X! = x! =
1

1 + !!!
   

which computes the conditional probability that the dependent 
variable Y assumes value 1, conditioned on the fact that the k 
independent random variables X1, …, Xk respectively assume the 
values x1, …, xk. The exponent ! = !! + !!!! + !!!! +   …+
!!!!  is usually called the logit. The Logistic Regression formula 
always provides a value between 0 and 1, which can be 
interpreted as a probability. The univariate (i.e., with one 
independent variable) BLR curve –illustrated in Figure 4– is an S-
shaped curve that asymptotically tends to hug the y=0 and y=1 
points on the y-axis. Also, it can be shown that, when assessing 
the impact of an independent variable xi alone (i.e., by keeping all 
other independent variables fixed), the value estimated by BLR 
increases when xi increases if bi, the coefficient associated with xi, 
is positive and decreases if bi is negative. If bi is null, then 
variable xi has no impact on the estimated probability. The values 
of the coefficients are estimated with Maximum Likelihood 
Estimation, based on the data contained in the data set, and 
statistical significance tests can be used to assess the evidence that 
bi is not null, i.e., variable xi does have an impact on the estimated 
probability.  

BLR has many analogies to linear regression. Unlike the latter, 
however, BLR does not assume linearity of relationship between 
the independent variables and the dependent variables, does not 
assume homoscedasticity, and in general has less stringent 
requirements. It does, however, require that observations be 
independent, and that the independent variables be linearly related 
to the logit of the dependent variable. At any rate, the logistic 
curve, as illustrated in Figure 4, is better for estimating probability 
values, as it is bounded by 0 and 1, whereas the linear regression 
function may predict values below 0 or above 1. 

We automated the building of the models in MOSST\REL by 
means of R [1] scripts. Specifically, we built BLR models with up 
to 3 independent variables. We limited the number of independent 
variables to a maximum of 3 to avoid possible “overfitting” 
problems, since the number of OSS products we analyzed is not 
very large.  

Column “logit” contains the logit of the model: so, for instance, 
the second row indicates that perceived reliability is a function of 
the average RFC according to the equation 

!"#$%&$#$'((!"#_!"#) =
1

1 + !−(1.67−0.0557  RFCavg)   
which represents the probability that a given product is given a 
reliability grade ≥ 5. 

 
Figure 4. Logistic vs. linear regression models 

 
All the models reported in this paper are significant at the 0.05 
level, which is the threshold usually used in Empirical Software 
Engineering studies. 
Table 2 also reports some characteristics of the models: 

– R2
log is a measure of goodness-of-fit [2] that ranges between 0 

and 1: the higher R2
log, the higher the effect of the model’s 

explanatory variables, the more accurate the model. 

– The fourth column in the table reports the number of products 
that were excluded from the analysis, having been considered 
outliers (we used Cook’s distance to identify outliers). 

– MMRE (Mean Magnitude Relative Error), which we used 
because it is a de facto goodness-of-fit indicators typically 
used in Empirical Software Engineering, indicates the average 
absolute percent error: the lower, the better. 

– Pred(25), another de facto goodness-of-fit indicator used in 
Empirical Software Engineering, shows how many products 
are within ±25% error with respect to the regression line. 

– The % error range indicates the minimum and maximum 
distance between observed values and estimated ones (always 
in percentage terms). 

5. ANALYSIS RESULTS: MOSST/REL 
5.1 Type of results 
Table 2 summarizes the statistically significant models found. In 
this table, each row represents a statistically significant reliability 
model. 

5.2 Discussion of results 
A first finding is that perceived reliability appears to be negatively 
related to the mean number of methods per class. This is a result 
that could be expected, since a low number of methods per class 
usually indicates a quite “focused” class, and the fewer the 
methods, the fewer the opportunities to insert defects in the code. 
Interestingly, no significant models were found relating perceived 
reliability to the size of classes in LOC or the number of 
attributes, etc. This seems to indicate that the perceived reliability 
of a class does not depend on how big the class is, or how much 
data it manages, but on “how much the class does.” 
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Table 2. Models of Reliability 

ID logit R2
log Outliers MMRE Pred25 % error 

1 1.67 – 0.1114 num_methods_per_class_avg 0.884 1 16% 76% -30%..44% 

2 1.67 –0.0557 RFC_avg 0.884 1 16% 76% -30%..44% 

3 1.7–0.015 CBO_avg –0.109 num_methods_per_class_avg 0.919 0 14% 82% -29%..44% 

4 1.7-0.015 CBO_avg –0.056 RFC_avg 0.919 0 14% 82% -29%..44% 

5 0.36 –0.0126 e_loc_per_class_avg +0.533 McCabe_index_avg 0.885 1 14% 82% -25%..50% 

 
 

Models 2, 3 and 4 in Table 2, involve Chidamber&Kemerer 
measures [3]. They confirm expectations: large values of CBO 
and RFC tend to decrease perceived reliability. Again, it is 
interesting to note the absence of models that could have been 
expected: we found no models involving measures of inheritance 
(like NOC and DIT); similarly, LCOM does not appear to affect 
reliability in our sample. 

Finally, model 5 deserves some comments, since it accounts for 
McCabe complexity, but appears somewhat strange, as the 
coefficient for McCabe complexity is positive (i.e., perceived 
reliability seems to increase with complexity). Actually, 
complexity appears together with the size of classes in effective 
LOC: accordingly, the model says that products characterized by 
small but complex classes are perceived as more reliable. This is 
not that surprising, and is actually coherent with model 1. For 
instance, small complex classes are probably better (and more 
easily) tested, thus increasing perceived reliability. 

5.3 Use and novelty of results 
MOSST\REL is a set of quantitative models that account for the 
dependence of OSS perceived reliability on objectively 
observable characteristics of OSS products and projects. These 
models can be used by: 
– end-users and developers that would like to (re)use existing 

OSS products and components, to evaluate the level of 
reliability of these OSS products that can be expected based 
on objectively observable characteristics of OSS product and 
projects; 

– developers of OSS products, who can set code quality targets 
based on the level of reliability they want to achieve. 

Unlike existing quality models for OSS, MOSST\REL is built by 
means of an approach that is valid from a theoretical point of view 
[20][21] and solid statistical techniques that use evidence coming 
from OSS stakeholders and the analysis of actual OSS products 
and projects. Unlike existing software quality models, the models 
in MOSST\REL are not based on weighted sums of independent 
variables, in which there is no guarantee that [19]: 1) the 
independent variables have a provably significant effect on the 
dependent variable, but the effect can only be conjectured, at best; 
2) the weights are not given values through a solid statistical 
analysis, but may be given largely arbitrary values. 

6. THREATS TO VALIDITY 
A number of threats may exist to the external validity of a 
correlational study like ours. We used a so-called “convenience 
sample,” composed of respondents who agreed to answer our 

questions. The sample of our respondents may not be fully 
“balanced,” however it was not possible to interview several 
additional people that could have made our sample more 
“balanced,” because they were not available and –most 
important– because no reliable demographic information about 
the overall population of OSS “users” is available, so it would be 
impossible to know if a sample is “balanced” in any way. 

In any case, we dealt with motivated interviewees, so this ensured 
a good level for the quality of responses, and there is no 
researcher’s bias in our survey. 

7. RELATED WORK 
In [13], seven OSS developers were asked their opinions on a set 
of OSS projects such as Apache, GNOME, Debian and others. 
The investigation resulted in the identification of a set of 
development and quality related problems, including lack of good 
support infrastructures, lack of development documentation and of 
adequate configuration management, unsatisfactory management 
of security updates, and problems in communication and 
coordination. 

An empirical study on correlating the subjective evaluation of 
“code smells” with objective measures [12] showed that the 
evaluations given by different roles tend to be different, and that 
developers’ evaluations of code smells do not correlate with the 
source code objective measures. 
We analyzed the correlation between the subjective evaluations of 
OSS Java products mentioned in Section 3 with the number of 
rule violations (i.e., potential problems) discovered by PMD [17]. 
The results showed that the perceived trustworthiness of OSS 
programs can be correlated to the number of rule violations 
concerning only critical code characteristics. 

Stamelos et al. [14] empirically studied the relationship between 
the size of application components and the delivered quality, 
measured through stakeholder satisfaction. The results indicated 
that applications with relatively small average component size 
seem to work better than applications that are composed of 
components of larger average size. 

Midha [15] analyzed 450 OSS projects from SourceForge and 
verified that high values of McCabe’s Cyclomatic Complexity and 
Halstead’s effort [16] are positively correlated with the number of 
bugs and with the time needed to fix bugs. 
To the best of our knowledge, no other studies have investigated 
the perception of OSS reliability. So, our work breaks new ground 
with respect to the studies mentioned above, as it involves the 
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subjective evaluation of OSS reliability and correlates it with 
measurable code properties. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we investigated whether it is possible to estimate the 
level of trust that OSS stakeholders may have in OSS products 
based on objectively measurable characteristics of OSS projects. 
We used an empirical approach, in which we interviewed a 
number of OSS stakeholders and collected data about the 
characteristics of 22 Java OSS projects. We found a number of 
statistically significant models (which we collectively call 
MOSST\REL) that correlate the level of trust in the reliability of 
OSS products with a number of measurable characteristics of OSS 
products. The models have fairly high goodness-of-fit and also are 
consistent with each other in the way in which measurable 
characteristics influence perceived reliability. 
Work remains to be done in this area. Specifically, we plan to 

– carry out more interviews, to keep up with the evolution of the 
field; 

– study the evolution of the field; 
– include more OSS products in the evaluation; 
– include in the dataset products written in multiple languages; 
– study the additional dimensions of OSS trustworthiness. 
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