
An Empirical Investigation of Perceived Reliability
of Open Source Java Programs

Luigi Lavazza, Sandro Morasca, Davide Taibi, Davide Tosi

Università degli Studi dellʼInsubria
Via Mazzini 5

I-21100 Varese, Italy

[luigi.lavazza, sandro.morasca, davide.taibi, davide.tosi]@uninsubria.it

ABSTRACT

Background: Open Source Software (OSS) is used by a
continuously growing number of people, both end-users and
developers. The quality of OSS is thus an issue of increasing
interest. Specifically, OSS stakeholders need to trust OSS with
respect to a number of qualities.
Objective: This paper focuses on the level of trust that OSS
stakeholders have in OSS reliability, one of the most important
software qualities. The goal of the work reported here is to
investigate to what extent the perception of reliability by users
depends on objectively measurable characteristics of software.
Method: We collected subjective user evaluations of the reliability
of 22 Java OSS products, and then we measured their code
characteristics that are generally believed to affect the quality of
software. Finally, we carried out a correlational study to predict
the perceived level of reliability of OSS based on the measured
characteristics of the software code.
Result: We obtained a set of statistically significant quantitative
models, collectively called MOSST\REL, which account for the
dependence of the perceived reliability of OSS on objectively
observable qualities of Java code.
Conclusions: The models we obtained can be used by: 1) end-
users and developers that would like to reuse existing OSS
products and components, to evaluate the perceived level of
reliability of these OSS products that can be expected based on
the characteristics of code; 2) the developers of OSS products,
who can set code quality targets based on the level of perceived
reliability they want to achieve.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – product metrics.

General Terms
Measurement, Reliability, Experimentation.

Keywords

Open source software, reliability model, object-oriented measures.

1. INTRODUCTION
Reliability is one of the most important qualities of any software
product. As such, it has been included as one of the top-level
characteristics of the international ISO9126 standard [18] in all of
its versions. Reliability issues, like several quality issues, are even
more important in Open Source Software (OSS) than in Closed
Source Software (CSS), as some software stakeholders (i.e., end-
users, developers, integrators, project managers, upper
management, etc.) may still be somewhat concerned about the
reliability (and more generally the quality) of OSS as compared to
CSS. While often overestimated, these concerns show that at least
some software stakeholders may have issues in trusting OSS and,
more specifically, its reliability. This is certainly not surprising,
since, like with any other product, stakeholders need to trust OSS
and its specific qualities before they can use it and depend on it.
Therefore, it is important that OSS stakeholders be able to
evaluate and estimate the level of trust that they can have in the
reliability of OSS products and components, so they can be
confident when they choose OSS software products and
components.
In this paper, we report on a study that we carried out in the
QualiPSo project [4], funded by the European Union in the 6th
Framework Program, whose general goal was to define and
implement technologies, procedures, and policies to leverage the
OSS development practices to sound and established industrial
operations. Among the objectives of QualiPSo was the definition
of a model of the trustworthiness of OSS products. To this end,
we adopted a goal-oriented and empirical approach, i.e., based on
analyzing OSS real-life projects and surveying extensive sets of
OSS stakeholders.
One of the key results of QualiPSo was therefore MOSST (Model
of Open Source Software Trustworthiness), which is a
comprehensive set of statistical models that allow OSS
stakeholders to estimate the trustworthiness of OSS products. OSS
trustworthiness itself is a broad concept and has several
“dimensions,” of which trust in OSS reliability is one of the most
important ones, along with trust in usability, portability,
interoperability, security, documentation quality, etc. [10].
MOSST estimates the level of trust in each of these dimensions
based on a number of product- and process-related factors, which
play the role of the independent variables of the estimation
models, while the trustworthiness dimensions play the role of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’12, March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

1109

dependent variables. Specifically, we obtained several estimation
models for trustworthiness and all of its dimensions.

In this paper, we focus on the results we have obtained for the
trust in OSS reliability, for which we have obtained a set of
models, which we call MOSST\REL, which allow for the
identification, quantification, and assessment of the factors related
to the OSS products and processes that have a statistically
significant impact on the level of trust in the reliability of OSS
products. The models in MOSST\REL quantitatively estimate the
impact that these factors, in isolation or combined, have on the
level of trust in OSS reliability. We used Binary Logistic
Regression to derive these models, as we explain in Section 4.

Data collection and analysis were supported by automated
software tools, with the goal of making the evaluation of OSS
trustworthiness as easy and seamless as possible both during the
building of the MOSST model (based on 22 Java OSS products)
and afterwards, when MOSST is used by OSS stakeholders. The
tool set includes tools from external OSS providers as well as
tools developed by the partners during the QualiPSo project. Here,
we describe a tool of the MOSST tool set, namely MACXIM,
which is a static code measurement and analysis tool. More
information about the MOSST toolset can be found in [19].

The remainder of this paper is structured as follows. Section 2
describes the measures and the tool that we used for
characterizing OSS code. Section 3 describes the subjective
measures and reports about their collection. Section 4 describes
our approach to the reported analysis, and explains the usage of
Binary Logistic Regression. Section 5 reports and discusses the
results of the analysis, and provides some indications on how
these results may be used. Section 6 discusses threats to the
validity of the reported study. Section 7 accounts for related work,
while conclusions and an outline of future work are in Section 8.

2. CODE MEASURES
Currently, several OSS and CSS measurement tools are available
to collect information about software code properties. However,
most of the existing tools lack in usability and support only a
subset of the possibly relevant code metrics. Here, we describe
both the tool we used during the collection of the measures for the
independent variables of MOSST\REL, and the measures
themselves.

In the QualiPSo project [4], we developed MACXIM, a new
generation measurement tool which provides static measures of
source code via a meta representation of the code abstract syntax
tree. MACXIM is released under the OSS LGPL license and can
be downloaded from [6].

The latest version of MACXIM –obtained by enhancing an earlier
version [5]– supports the most recent versions of Java, thanks to
the incorporation of the parser contained in the Eclipse compiler,
a component of the Eclipse Core Java Development Tools [9], and
supports a wide set of measures.

MACXIM stores a simplified representation of the abstract syntax
tree of the source code in a relational database (see Figure 1), thus
allowing users to extract several metrics simply via SQL queries.
The main advantage of this approach, when compared to similar
approaches, consists in the separation of two tasks that are usually
deeply interconnected:

– Source code analysis;
– Computation of measures.

Figure 1. An architectural representation of MACXIM

The separation of these concerns is quite an advantage, since
different measures can be implemented on top of the data
provided by code analysis. Measurers can thus change or extend
the set of supported metrics without necessarily having to modify
the part of the program that performs code analysis. The current
implementation of the code analyzer is powerful enough to
support a wide range of measures, including all the most widely
used object-oriented measures, like those by Chidamber and
Kemerer [3].

Moreover, MACXIM is developed with a plug-in architecture that
allows the integration of external measurement tools: in the
current version, we integrated the measurement capabilities of
PMD [7] and Checkstyle [8].
For each Java product, MACXIM provides measures aggregated
at application, package and class levels, where appropriate. The
current release of MACXIM [6] provides 130 measures (of which
58 yielded by the incorporated PMD and Checkstyle code), a
selection of which is in Table 1. The complete list and explanation
of measures supported by MACXIM can be found in [6].
Table 1. A selection of the measures supported by MACXIM

Size/structure measures

ELOC (Effective Lines Of Code) ELOC per Class

ELOC per Interface Number of Packages

Number of Classes Number Of Classes Out Of
Packages

Number of Abstract Classes Number of Interfaces

Number of Methods Number of Public Methods

Number of Private Methods Number of Protected Methods

Number of Methods per Class Number of Methods per Interface

Number of Parameters per Method Number of Attributes per Class

Number of Public Attributes per
Class

Number of Classes With Defined
Attributes

Number of Classes With Defined
Methods

Number Implemented Interfaces
per Class

Number of Not Implemented
Interfaces

Cyclomatic Complexity (Mc
Cabe Index)

Chidamber & Kemerer measures

CBO (Coupling Between Objects) LCOM (Lack Of Cohesion Of
Methods)

DIT (Depth of Inheritance Tree) NOC (Number Of Children)

RFC (Response For A Class)

1110

Figure 2. An example of project analysis

Figure 3. An example of graphical representation of the

MOSST\REL model
MACXIM can be used by means of a Web application or a
desktop client.
The Web application is the main Graphical User Interface (GUI)
that provides direct access to the MACXIM engine. The results of
the analysis of a project can be accessed at different granularity
levels, like the application, package, class and method levels: for
instance, the number of effective LOC is provided for the entire
application, for each package, for each class and for each method.
Figure 2 illustrates the measures of three releases of a Java
project, while Figure 3 reports the graphical representation of a
MOSST\REL model provided by the Spago4Q framework [22].

The desktop client provides the same functionalities of the Web
application, but communicates with MACXIM via Web services.
A detailed description of this interface can be found at [6].

3. STAKEHOLDERS' MEASUREMENT OF
TRUST IN RELIABILITY
We carried out a survey in the QualiPSo project [4] to collect OSS
stakeholders’ evaluations of 22 Java products according to the
dimensions of the trustworthiness of OSS products we mentioned
in the introduction. These dimensions are believed to be the ones
that contribute to trustworthiness the most, based on a previous
survey that we carried out among OSS stakeholders [10]. The list
of products appears in [11]. In addition, we asked a few questions
for profiling and characterizing the OSS stakeholders, including
questions on how familiar they were with the products. We used a
1 to 6 ordinal scale, where 1 was the worst and 6 the best
evaluation for a specific quality of a product. As for reliability, we
asked OSS stakeholders “How reliable is the product?” with the
following possible answers:

1 = absolutely not; 2 = little; 3 = just enough; 4 = more than
enough; 5 = very/a lot; 6 = completely.

Up to the end of October 2010, we collected 694 questionnaires,
which included 1357 evaluations of the following 22 OSS Java
products: Ant, Checkstyle, Eclipse, Findbugs, Hibernate,
HttpUnit, Jack.CommonsIO, JasperReports, JBoss, JFreeChart,
JMeter, Log4J, PMD, Saxon, Servicemix, SpringFramework,
Struts, Tapestry, Weka, Xalan, Xerces.
Our sample of respondents included all sorts of OSS stakeholders
(i.e., end users, developers, integrators, managers, etc.). The
questionnaires were collected at major international events –not
necessarily strictly dealing with OSS topics– including: The
Apache Conference 2009, The OW2 Conference 2009, XP 2009,
OSS 2009, ICSE 2009, CONFSL 2009, QualiPSo Meeting June
2009, ESC 2009, XML Conf 2010, Microsoft Real Code Conf
2010, CONFSL 2010, OSCON 2010, Debian Conf 2010, Open
World Forum 2010, Open Opportunity 2010 and fOSSa 2010.

The questionnaire can be found on line at
http://qualipso.dscpi.uninsubria.it/limesurvey (QualiPSo survey
2).

In the analysis, we used only products for which we obtained at
least 6 subjective evaluations by stakeholders that indicated that
they had good familiarity with the product, i.e., for which there
were enough people in the sample that could provide us with data
for the product to be included in the analysis. Seventeen products
turned out to satisfy the selection criteria.

4. ANALYSIS APPROACH
Here, we explain how we built the models that correlate
subjective OSS stakeholder evaluations concerning reliability with
objective measures of code, to obtain the estimation models which
compose MOSST\REL.
To summarize the different evaluations in such a way that
meaningful models could be built, we decided to divide the
evaluations in positive ones (grade 5 or 6) and negative ones
(grade 4 or less). We chose to set the dividing threshold between 4
and 5 because in this way we are able to distinguish really
satisfied stakeholders from other stakeholders and also because in
the set of responses really few stakeholders gave a 1 or 2 score to
a product for reliability. Using a lower threshold (e.g., between 3
and 4) would have blurred the distinction between satisfied and
unsatisfied stakeholders.
If we denote the number of satisfied OSS stakeholders by S and
the number of unsatisfied OSS stakeholders by U, we can
compute the proportion S/(S+U) of satisfied stakeholders for the
product, which provides a better indication of the level of trust in
the reliability of the product than the absolute number of positive
responses. As the absolute numbers of respondents (and therefore
of positive and negative responses) for a product depends on a
number of different factors like the operating system of the
product, the application domain and many others, it makes more
sense to use proportions to assess the level of trust in the
reliability of a product. This proportion, based on the sample,
quantifies the probability that the reliability of that product will be
rated positively.

Suppose that we need to assess the reliability of an OSS product
that is not included in the set of OSS products of our survey. We
do not have a direct evaluation from the field; accordingly, we
need to estimate the proportion of satisfied users, i.e., the

1111

probability that the reliability of that product will be rated
positively. Thus, we need to build a model that estimates the
probability that an OSS product will be positively rated.

To this end, we used Binary Logistic Regression (BLR), a kind of
regression used to estimate the probability that the dependent
variable assumes one out of two possible values and the
independent variables are of any type, i.e., discrete or continuous.
In our case, the dependent variable values are “satisfied
stakeholder” (which is coded with the numerical value 1 in our
analysis) and “unsatisfied stakeholder” (which is coded with the
numerical value 0 in our analysis). The independent variables are
the measures of OSS project described in Section 2. More
formally, BLR is based on the following formula

!"#$ Y = 1 | X! = x!,… , X! = x! =
1

1 + !!!

which computes the conditional probability that the dependent
variable Y assumes value 1, conditioned on the fact that the k
independent random variables X1, …, Xk respectively assume the
values x1, …, xk. The exponent ! = !! + !!!! + !!!! + …+
!!!! is usually called the logit. The Logistic Regression formula
always provides a value between 0 and 1, which can be
interpreted as a probability. The univariate (i.e., with one
independent variable) BLR curve –illustrated in Figure 4– is an S-
shaped curve that asymptotically tends to hug the y=0 and y=1
points on the y-axis. Also, it can be shown that, when assessing
the impact of an independent variable xi alone (i.e., by keeping all
other independent variables fixed), the value estimated by BLR
increases when xi increases if bi, the coefficient associated with xi,
is positive and decreases if bi is negative. If bi is null, then
variable xi has no impact on the estimated probability. The values
of the coefficients are estimated with Maximum Likelihood
Estimation, based on the data contained in the data set, and
statistical significance tests can be used to assess the evidence that
bi is not null, i.e., variable xi does have an impact on the estimated
probability.

BLR has many analogies to linear regression. Unlike the latter,
however, BLR does not assume linearity of relationship between
the independent variables and the dependent variables, does not
assume homoscedasticity, and in general has less stringent
requirements. It does, however, require that observations be
independent, and that the independent variables be linearly related
to the logit of the dependent variable. At any rate, the logistic
curve, as illustrated in Figure 4, is better for estimating probability
values, as it is bounded by 0 and 1, whereas the linear regression
function may predict values below 0 or above 1.

We automated the building of the models in MOSST\REL by
means of R [1] scripts. Specifically, we built BLR models with up
to 3 independent variables. We limited the number of independent
variables to a maximum of 3 to avoid possible “overfitting”
problems, since the number of OSS products we analyzed is not
very large.

Column “logit” contains the logit of the model: so, for instance,
the second row indicates that perceived reliability is a function of
the average RFC according to the equation

!"#$%&$#$'((!"#_!"#) =
1

1 + !−(1.67−0.0557 RFCavg)
which represents the probability that a given product is given a
reliability grade ≥ 5.

Figure 4. Logistic vs. linear regression models

All the models reported in this paper are significant at the 0.05
level, which is the threshold usually used in Empirical Software
Engineering studies.
Table 2 also reports some characteristics of the models:

– R2
log is a measure of goodness-of-fit [2] that ranges between 0

and 1: the higher R2
log, the higher the effect of the model’s

explanatory variables, the more accurate the model.

– The fourth column in the table reports the number of products
that were excluded from the analysis, having been considered
outliers (we used Cook’s distance to identify outliers).

– MMRE (Mean Magnitude Relative Error), which we used
because it is a de facto goodness-of-fit indicators typically
used in Empirical Software Engineering, indicates the average
absolute percent error: the lower, the better.

– Pred(25), another de facto goodness-of-fit indicator used in
Empirical Software Engineering, shows how many products
are within ±25% error with respect to the regression line.

– The % error range indicates the minimum and maximum
distance between observed values and estimated ones (always
in percentage terms).

5. ANALYSIS RESULTS: MOSST/REL
5.1 Type of results
Table 2 summarizes the statistically significant models found. In
this table, each row represents a statistically significant reliability
model.

5.2 Discussion of results
A first finding is that perceived reliability appears to be negatively
related to the mean number of methods per class. This is a result
that could be expected, since a low number of methods per class
usually indicates a quite “focused” class, and the fewer the
methods, the fewer the opportunities to insert defects in the code.
Interestingly, no significant models were found relating perceived
reliability to the size of classes in LOC or the number of
attributes, etc. This seems to indicate that the perceived reliability
of a class does not depend on how big the class is, or how much
data it manages, but on “how much the class does.”

1112

Table 2. Models of Reliability

ID logit R2
log Outliers MMRE Pred25 % error

1 1.67 – 0.1114 num_methods_per_class_avg 0.884 1 16% 76% -30%..44%

2 1.67 –0.0557 RFC_avg 0.884 1 16% 76% -30%..44%

3 1.7–0.015 CBO_avg –0.109 num_methods_per_class_avg 0.919 0 14% 82% -29%..44%

4 1.7-0.015 CBO_avg –0.056 RFC_avg 0.919 0 14% 82% -29%..44%

5 0.36 –0.0126 e_loc_per_class_avg +0.533 McCabe_index_avg 0.885 1 14% 82% -25%..50%

Models 2, 3 and 4 in Table 2, involve Chidamber&Kemerer
measures [3]. They confirm expectations: large values of CBO
and RFC tend to decrease perceived reliability. Again, it is
interesting to note the absence of models that could have been
expected: we found no models involving measures of inheritance
(like NOC and DIT); similarly, LCOM does not appear to affect
reliability in our sample.

Finally, model 5 deserves some comments, since it accounts for
McCabe complexity, but appears somewhat strange, as the
coefficient for McCabe complexity is positive (i.e., perceived
reliability seems to increase with complexity). Actually,
complexity appears together with the size of classes in effective
LOC: accordingly, the model says that products characterized by
small but complex classes are perceived as more reliable. This is
not that surprising, and is actually coherent with model 1. For
instance, small complex classes are probably better (and more
easily) tested, thus increasing perceived reliability.

5.3 Use and novelty of results
MOSST\REL is a set of quantitative models that account for the
dependence of OSS perceived reliability on objectively
observable characteristics of OSS products and projects. These
models can be used by:
– end-users and developers that would like to (re)use existing

OSS products and components, to evaluate the level of
reliability of these OSS products that can be expected based
on objectively observable characteristics of OSS product and
projects;

– developers of OSS products, who can set code quality targets
based on the level of reliability they want to achieve.

Unlike existing quality models for OSS, MOSST\REL is built by
means of an approach that is valid from a theoretical point of view
[20][21] and solid statistical techniques that use evidence coming
from OSS stakeholders and the analysis of actual OSS products
and projects. Unlike existing software quality models, the models
in MOSST\REL are not based on weighted sums of independent
variables, in which there is no guarantee that [19]: 1) the
independent variables have a provably significant effect on the
dependent variable, but the effect can only be conjectured, at best;
2) the weights are not given values through a solid statistical
analysis, but may be given largely arbitrary values.

6. THREATS TO VALIDITY
A number of threats may exist to the external validity of a
correlational study like ours. We used a so-called “convenience
sample,” composed of respondents who agreed to answer our

questions. The sample of our respondents may not be fully
“balanced,” however it was not possible to interview several
additional people that could have made our sample more
“balanced,” because they were not available and –most
important– because no reliable demographic information about
the overall population of OSS “users” is available, so it would be
impossible to know if a sample is “balanced” in any way.

In any case, we dealt with motivated interviewees, so this ensured
a good level for the quality of responses, and there is no
researcher’s bias in our survey.

7. RELATED WORK
In [13], seven OSS developers were asked their opinions on a set
of OSS projects such as Apache, GNOME, Debian and others.
The investigation resulted in the identification of a set of
development and quality related problems, including lack of good
support infrastructures, lack of development documentation and of
adequate configuration management, unsatisfactory management
of security updates, and problems in communication and
coordination.

An empirical study on correlating the subjective evaluation of
“code smells” with objective measures [12] showed that the
evaluations given by different roles tend to be different, and that
developers’ evaluations of code smells do not correlate with the
source code objective measures.
We analyzed the correlation between the subjective evaluations of
OSS Java products mentioned in Section 3 with the number of
rule violations (i.e., potential problems) discovered by PMD [17].
The results showed that the perceived trustworthiness of OSS
programs can be correlated to the number of rule violations
concerning only critical code characteristics.

Stamelos et al. [14] empirically studied the relationship between
the size of application components and the delivered quality,
measured through stakeholder satisfaction. The results indicated
that applications with relatively small average component size
seem to work better than applications that are composed of
components of larger average size.

Midha [15] analyzed 450 OSS projects from SourceForge and
verified that high values of McCabe’s Cyclomatic Complexity and
Halstead’s effort [16] are positively correlated with the number of
bugs and with the time needed to fix bugs.
To the best of our knowledge, no other studies have investigated
the perception of OSS reliability. So, our work breaks new ground
with respect to the studies mentioned above, as it involves the

1113

subjective evaluation of OSS reliability and correlates it with
measurable code properties.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated whether it is possible to estimate the
level of trust that OSS stakeholders may have in OSS products
based on objectively measurable characteristics of OSS projects.
We used an empirical approach, in which we interviewed a
number of OSS stakeholders and collected data about the
characteristics of 22 Java OSS projects. We found a number of
statistically significant models (which we collectively call
MOSST\REL) that correlate the level of trust in the reliability of
OSS products with a number of measurable characteristics of OSS
products. The models have fairly high goodness-of-fit and also are
consistent with each other in the way in which measurable
characteristics influence perceived reliability.
Work remains to be done in this area. Specifically, we plan to

– carry out more interviews, to keep up with the evolution of the
field;

– study the evolution of the field;
– include more OSS products in the evaluation;
– include in the dataset products written in multiple languages;
– study the additional dimensions of OSS trustworthiness.

9. ACKNOWLEDGMENTS
The research presented in this paper has been partially funded by
the IST project QualiPSo (http://www.qualipso.eu/), sponsored by
the EU in the 6th FP (IST-034763); the FIRB project ARTDECO,
funded by the Italian Ministry of Education and University; and
the project “Metodi e tecniche per l’analisi, l’implementazione e
la valutazione di sistemi software” funded by the Università degli
Studi dell’Insubria.

10. REFERENCES
[1] The R Development Core Team, R: A Language and

Environment for Statistical Computing - Reference Index,
Version 2.9.0 (2009-04-17)”, R Foundation for Statistical
Computing, 2009.

[2] Briand, L. C., Morasca, S., and Basili, V. R. Defining and
Validating Measures for Object-Based High-Level Design,
IEEE Transactions on Software Engineering, Vol. 25, No. 5,
September/October 1999.

[3] Chidamber, S. R. and Kemerer, C. F. A metrics suite for
object oriented design, IEEE Transactions on Software
Engineering, vol.20, no.6, pp.476-493, Jun 1994.

[4] The QualiPSo project web site. http://www.qualipso.org
[5] Crisà, A. F., Del Bianco, V., Lavazza, L. A tool for the

measurement, storage, and pre-elaboration of data supporting
the release of public datasets, Workshop on Public Data

about Software Development – WoPDaSD 2006, Como, June
10th, 2006.

[6] MACXIM, http://qualipso.dscpi.uninsubria.it/macxim/.
[7] PMD, http://pmd.sourceforge.net/
[8] Checkstyle, http://checkstyle.sourceforge.net/
[9] Eclipse Core Java Development Tools,

http://www.eclipse.org/jdt/
[10] Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D. A Survey

on OSS Product Trustworthiness, IEEE Software,
September/October 2011 (vol. 28 no. 5), pp. 67-75.

[11] Del Bianco, V., Lavazza, L., Morasca, S., Taibi, Tosi, D. An
investigation of the users’ perception of OSS quality, Int.
Conf. on Open Source Systems – OSS 2010, Notre Dame, IN,
USA, May-June 2010.

[12] Mantyla, M. V. and Lassenius, C. Subjective Evaluation of
Software Evolvability Using Code Smells: An Empirical
Study. Empirical Software Engineering (2006) 11: 395-431

[13] Michlmayr, M., Hunt, F., Probert, D. Quality Practices and
Problems in Free Software Projects, First International
Conference on Open Source Systems, pp. 24-28, 2005.

[14] Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G. L. Code
Quality Analysis in Open Source Software Development.
Information Systems Journal, 12:43–60, 2002.

[15] Midha, V. Does Complexity Matter? The Impact of Change
in Structural Complexity On Software Maintenance and New
Developers’ Contributions in Open Source Software. ICIS
2008.

[16] Halstead, “Elements of Software Science”, New York,
Elsevier North-Holland, 1977.

[17] Lavazza, L., Morasca, S., Taibi, D., Tosi, D. Predicting OSS
Trustworthiness on the Basis of Elementary Code
Assessment, Int. Symposium on Empirical Software
Engineering and Measurement – ESEM 2010. Bozen,
September 16-17, 2010.

[18] International Organization for Standardization, ISO/IEC
9126-1:2001 Software engineering – Product quality – Part
1: Quality model.

[19] MOSST: model of Open Source Software trustworthiness.
http://www.qualipso.org/mosst-champion

[20] Morasca, S. On the use of weighted sums in the definition of
measures, ICSE Workshop on Emerging Trends in Software
Metrics – WETSoM 2010, Cape Town, South Africa, May 4,
2010.

[21] Morasca, S. A probability-based approach for measuring
external attributes of software artifacts, Int. Symposium on
Empirical Software Engineering and Measurement –ESEM
2009, Lake Buena Vista, Florida, USA, October 15-16, 2009,
pp. 44-55.

[22] SPAGO4Q, http://www.spagoworld.org

1114

